Home of UT
Materials Science and
Engineering

Core Faculty
TMI's core faculty lead cutting-edge research by running their grants through the institute, fostering collaboration and resource sharing.
Learn More

Graduate Program
Our Materials Science and Engineering program is one of the best in the nation, and our graduates go on to be leaders in their fields.
Learn More

Research
TMI supports interdisciplinary research at UT Austin, with over 100 faculty focusing on clean energy, nanotechnology, and advanced materials using our state-of-the-art facilities.
Learn More
Home

Laser Technology Cools the Way for Cellular Surgery and Drug Delivery
Imagine a laser so gentle it can cradle nanoparticles, biological cells, and even drive drug-delivering microscopic vehicles to sick cells without causing harm. This isn't science fiction; it's a new innovation led by a team of scientists at The University of Texas at Austin.

Optica Announces 2024 Fellows Class, Dr. Yuebing Zheng
The Board of Directors of Optica (formerly OSA), Advancing Optics and Photonics Worldwide, recently elected 129 members from 26 countries to the Society's 2024 Fellow Class. Among those 129 members, our very own Materials Science & Engineering graduate advisor and Associate Professor in the Walker Department of Mechanical Engineering, Dr. Yuebing Zheng was selected.

Swarming Behavior, Inspired by Nature, Holds Key to Future Robotics and Optoelectronics
Researchers at The University of Texas at Austin have put forth a pioneering concept and working mechanism for generating reconfigurable multi-modal micromotor swarms, providing unprecedented spatial, temporal, and mode control compared to previous endeavors.

Hutter Lab Ensures Safe Hand Sanitizers through Infrared Spectroscopy
Recent safety concerns have arisen due to harmful substances like methanol and 1-propanol being found in some hand sanitizers.
Page 31 of 38
Texas Materials Seminar Series
The Texas Materials Seminar Series features MSE 397 Seminars, TMI Distinguished Lectureships, and TMI Special Seminars, where leading faculty and professionals from around the world share cutting-edge innovations and advancements in materials engineering with our students.
Learn More

News
Dr. Deji Akinwande's Group Publishes in ACS Nano

Dr. Deji Akinwande’s research group has just published new research in ACS Nano. The team developed a novel method using UV-Ozone to create precisely engineered defects in graphene membranes. This breakthrough solves a major challenge in ultrathin hydrogen fuel cell membranes, improving their performance without affecting the material’s strength or stability.
A Path to Safer, High-Energy Electric Vehicle Batteries

Nickel’s role in the future of electric vehicle batteries is clear: It’s more abundant and easier to obtain than widely used cobalt, and its higher energy density means longer driving distances between charges.
Graphene Double Moiré System Revolutionizes Quantum Materials Research

An international research team, led by scientists from The University of Texas at Austin, has unveiled a groundbreaking double moiré system made of four graphene layers. In this innovative structure, the top and bottom pairs form small-twist-angle bilayer graphene, while the middle interface is characterized by a large rotational mismatch. Fabricated using opto-thermoplasmonic nanolithography, this system introduces a new platform for exploring independently tunable flat bands in twisted bilayer graphene (TBG) structures.
Dr. Deji Akinwande Publishes in Nature Electronics

Dr. Deji Akinwande, Professor at The University of Texas at Austin, has made a notable contribution to the field of semiconductor physics with his latest publication, “The quantum limits of contact resistance and ballistic transport in 2D transistors” in Nature Electronics.
Fast-charging Lithium-ion Batteries: Advanced 3D Analysis of Electrode-electrolyte Interfaces with Secondary Ion Mass Spectrometry

Chen Liu, Andrei Dolocan, Zehao Cui, and Arumugam Manthiram have made significant progress in improving the fast-charging capabilities of lithium-ion batteries (LIBs), which are crucial for devices like smartphones and electric vehicles. Their work, published in The Journal of the American Chemical Society, focuses on how the chemistry of the interface between the battery electrodes and electrolyte can be optimized to make charging faster and more efficient.
$12M+
In Grant Funding
20+
Research Patents
10K+